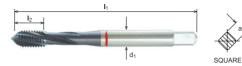


LEGEND & DESCRIPTION

Material	HSS	High Sp Steel	peed		HSS Co5	5% Coba		I	HSS Co8	8% Cob High Sp	alt eed Steel	HSS Co8e	8% Cobalt HSS, Eccentric Relief Sharpening
Ma	HSSE V3	3% Var High Sp	nadium beed Ste	el	'SOLID CARBIDE	9-10% C 0.2-0.8 µ		size.	CARBON STEEL	Carbon	Steel		
Finish	BLUE FINISH	Steam (HOMO) Temper			BRIGHT FINISH	No Surface Treatment		BRIGHT FINISH WITH TIN TIP	TiN Coated for a length of 4 x diameter		r		
Fi	GOLD OXIDE	Steam (Temper Straw C			TIAIN		ı Alumini Black Fir		TiN	Titanium (Gold Fi		X.TREME	TiALN suited to Solid Carbide (Violet -grey Finish)
Туре	TYPE N	Type N Standar	-d		TYPE W	Type W For Soft	Material	S	TYPE H	Type H For Hard	d Materials	TYPE FS	Parabolic Flute Strong Core
Ţ	СВА	Colour Applica											to Solid Carbide (Violet -grey Finish) TYPE FS Parabolic Flute Strong Core Coarse Pitch Flat Crest Rough Semi- finishing Profile
Milling Profile	Staggered Teeth Side & Face Cutters					Straight Teeth Side & Face Cutters							
Millin	HR		tch Knud oughing		NR		Pitch Kno ughing P		HF	Fine Pito Rough S finishing		NF	Crest Rough Semi-
Standard	ISO 529	ISO Sta	ındard 5	29	DIN 371	DIN Star	ndard 37	1	WORKS STD.				
Star	RF	Refined Flute			QS	Quick Sp	Quick Spiral H 7 Reamer to produce H7 Tolerance						
Shank	 ∅ h6	Flatted Shank h6 Tolerance			<u></u> ∅ h7	Plain Shank h7 Tolerance		⁄ Ø h8	Threaded Shank h8 Tolerance Ø h6		⊆ ∅ h6	Carbide Plain Shank h6 Tolerance	
Sh	MT 3 - 5	Morse 1 Shank	Гарег										
Point Angle	90	100°	118°	70° 118°	120°	130°	135°	Drill I Angle					
Point	90°	Counte	rsink										
Lengths		Drills Stub Se	eries		00000000000000000000000000000000000000	Drills Jobber S	Series			Drills Long Se	eries		Drills Extra Length Series
		End Mil Regular				End Mills Long Se							
Flute Helix Angle	15° 🔭	20°7	25°	30°	33°	35° [>	38°	40°	> 45°	Right helix	hand		
Flute He	5°	10°\	20°	Left ha	and								
Centre Drills	€60°	Form A Standar			60° 120°	Form B Protecte			Form R Radius				
Incli- nation	1:10	To Suit 10 Tape			1:50	To Suit 1 50 Taper			1:48	To Suit 1	I in 48		

LEGEND & DESCRIPTION


	м	Metric Unified National Coarse			MF	Metric Fi	ne	BSW	British Standard Whitworth	BSF	British Standard Whitworth Fine
Threads	UNC				UNF	Unified National Fine		BSPT	British Standard Pipe Taper "F" Series		British Standard Pipe (Fine) "G" Series
Thre	NPS	National Pipe Straight			NPT	National Taper	ional Pipe er BA British Association		British Association	BSB	British Standard Brass
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\sigma_\s									
Tolerance	Ø h8 (d)	Ø h8	Ø k10	Ø h10	Ø k12	Ø e8					
Tole	w=e8 d=h12	w=d11 d=d11	Woodri					Ø r=H11 d1=js14	Corner Rounding Tolerance		
nc		Ø.				Directio Cut	on of				
Application			Taper, Through & Blind Hole			Through Blind Hol			Blind Hole Tapping		Through Hole Tapping
	LH	Left Hand Cutting			RH	Right Ha	nd			*	Hand Taps

Materials Code 0 Code 1 Code 2 Code 3 Code 4 Code 5 Code 7 Free Cutting Steels Х Х Х Х Х Х Х Carbon Steel Alloy Steel Х х Х х Х Х х Stainless Steel х х х х х х х Heat Resisting Alloys х х Nimonic Alloys Х Х Х Titanium х х х х х Х Х Tool Steel х х х х Cast Irons Х Х Х Х Х Х Х Nickel х Manganese Steels Aluminium Alloys Х х Х х Х х х Magnesium Alloys х x Х Х Zinc Alloys х Х Copper Х х Х Х Х Х Х Synthetics / Plastics Х Х Х Х Х Х Х

Red Band Spiral Flute Taps for tapping Tough Treatable Steels

Size	Pitch	lı	l 2	d ₁	а	No. of Flutes	Code
М3	0.5	56	5	3.5	2.7	3	5640300
M4	0.7	63	7	4.5	3.4	3	5640400
M5	8.0	70	8	6	4.9	3	5640500
M6	1.0	80	10	6	4.9	3	5640600
M8	1.25	90	12.5	8	6.2	3	5640800
M10	1.5	100	15	10	8	4	5641000

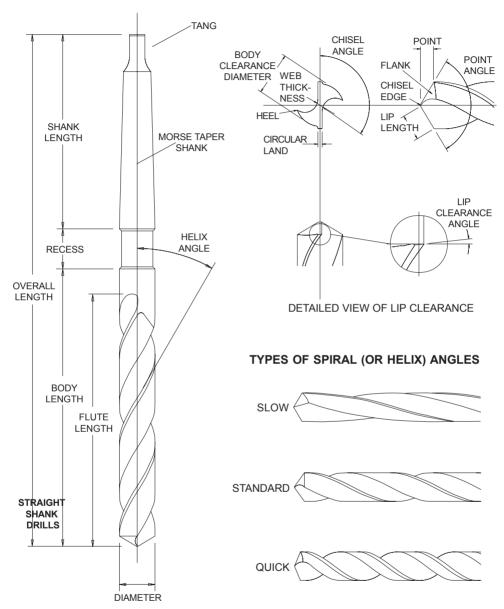
Code
564

Properties								
М		HSSE V3						
ISO 2	371							
6H	\60°/	15°						
CBA	(Y ////						
	RH	TIAIN						

Suited Materials							
TOUGH TREATABLE STEEL							
TOOL STEEL (ALLOY)	TITANIUM						

Red Band Spiral Flute Taps for tapping Tough Treatable Steels

Size	Pitch	lı	l 2	d ₁	а	No. of Flutes	Code
M12	1.75	110	17.5	9	7	4	5761200
M14	2	110	20	11	9	4	5761400
M16	2	110	20	12	9	4	5761600
M18	2.5	125	25	14	11	4	5761800
M20	2.5	140	25	16	12	4	5762000
M22	2.5	140	25	18	14.5	4	5762200
M24	3	160	30	18	14.5	4	5762400



Properties								
M	DIN	HSSE						
ISO 2	376	V3						
6H	\60°/	15°7						
CBA	(1///						
	RH	TIAIN						

Suited Materials						
TOUGH TREATABLE STEEL						
TOOL STEEL (ALLOY)	TITANIUM					

Note: Selecting the correct Drill Refer to the User Guide for detailed information.

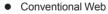
DRILL POINT STYLES

Standard Point

Split Point
Din 1412 Form C

118° 70°

"UX Point" DIN 1412 TYPE B

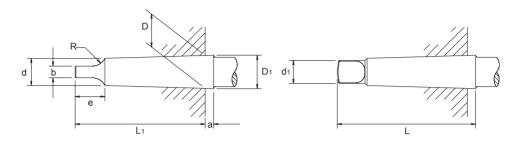

Cast Iron Point "DX Point" DIN 1412 TYPE D

DIN 1412 TYPE A

FLUTE FORMS

- Parabolic Flute Form
- Thicker Web

Chipbreak HANK DRILLS


Benefits of the Parabolic Flute Form

Heavy web construction increases rigidity under torsional load thus eliminating chatter at the cutting edges which cause edge break down and early failure. The Parabolic drill web is 50-90% thicker than the standard drill, depending on drill diameter.

Wider flute form, together with quicker spiral, promotes better chip removal while allowing easier coolant flow to the drill point.

STANDARD MORSE TAPER SHANK To I.S.O. 296 DIN228 BS1660

No. of Taper	Fitting line Diameter D	Diameter d	Overall Length Max L	D 1	а	Max L1	Max e	H13 b	Max d1	Taper / mm on Dia	Max R
1	12.065	9.0	65.5	12.2	3.5	62.0	13.5	5.2	8.7	0.04998	5.0
2	17.780	14.0	80.0	18.0	5.0	75.0	16.0	6.3	13.5	0.04995	6.0
3	23.825	19.0	99.0	24.1	5.0	94.0	20.0	7.9	18.5	0.05020	7.0
4	31.267	25.0	124.0	31.6	6.5	117.5	24.0	11.9	24.5	0.05194	8.0
5	44.399	36.0	156.0	44.7	6.5	149.5	29.0	15.9	35.7	0.05263	10.0
6	63.348	52.0	218.0	63.8	8.0	210.0	40.0	19.0	51.0	0.05214	13.0

HOW TO ORDER SPECIALS

MODIFIED STANDARDS

There are many instances when a special tool (a tool not found in the Somta catalogue or price list) can be manfactured from a standard product. We call this a 'modified standard'. Somta has both the capability and capacity to offer this service which, under normal circumstances, means a short delivery time.

The following are typical drill modifications:

Intermediate Diameters

Standard sizes can be ground down to special diameters and tolerances.

Reduced Overall Lengths

Standard drills can be cut to special lengths.

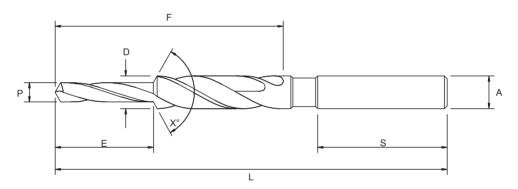
Drill Points

The standard drill point angle is 118° included. This can be modified to any angle required. Many special

points are available which include web thinning, notch points, split points, double angle points, spur and brad points etc.

Tangs and Flats

Tangs can be produced to DIN, ASA and ISO, also special whistle notch flats on shanks.


Step Drills

Standard drills can be modified into step drills.

Surface Treatments

A full range of surface treatments including nitriding, stream oxide, chemical blackening, gold oxide and various titanium coatings are available.

MULTIPLE DIAMETER DRILLS

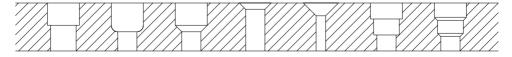
Specify whether drill is to be Step or Subland Type.

D = Diameter of large, fluted section.

P = Diameter of small, fluted section.

A = Shank Diameter.

L = Overall Length.

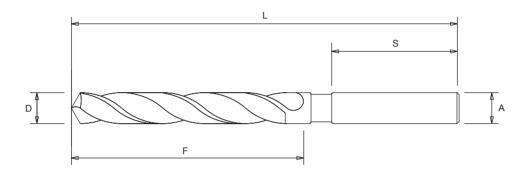

F = Flute Length.

E = Length of Small Diameter. This is measured from the extreme point to the bottom corner of the step angle.

 X° = Included angle of the step angle.

S = Shank Length.

It is possible to drill two or more diameters in a hole on one operation with a correctly designed drill and these are often used in mass production engineering.

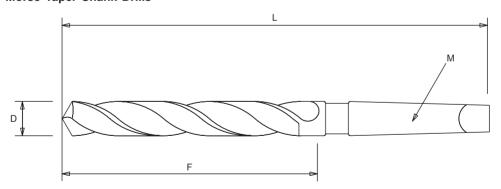


Some of the hole types that can be drilled in a single operation.

When an intermediate diameter or a non standard length of drill is required, the following diameters and lengths need to specified.

Straight Shank Drills

D = Drill Diameter


A = Shank Diameter

L = Overall Length

F = Flute Length

S = Shank Length

Morse Taper Shank Drills

D = Drill Diameter

L = Overall Length

F = Flute Length

M = Morse Taper Size